Study Guide 10

Second-Order Linear Equations

A second-order linear differential equation on I can be written as

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = G(x), \quad x \in I,$$

where P, Q and G are arbitrary functions of the independent variable $x \in I$. Particularly important are the constant-coefficient equations, where P and Q (but not necessarily G) are constants, and the homogeneous equations, where G(x) = 0 for all $x \in I$.

Thus the form of a second-order linear homogeneous differential equation is

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

If $G(x) \neq 0$ for some $x \in I$, it is called a nonhomogeneous differential equation.

Definition A general solution to a second-order linear differential equation is a solution containing two arbitrary constants of integration. A particular solution is derived from the general solution by setting the constants of integration to values that satisfy the initial value conditions of the problem.

Definition Two functions y_1 and y_2 are said to be linearly independent in I if neither y_1 nor y_2 is a constant multiple of the other throughout I.

Remark Two differentiable functions y_1 and y_2 are linearly independent in I = (a, b) if and only if

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix} = y_1(x)y'_2(x) - y_2(x)y'_1(x) = 0 \quad \text{for all } x \in I.$$

Proof If y_1 and y_2 are linearly dependent, then there exists a constant $c \in \mathbb{R}$ such that $y_2(x) = cy_1(x)$ for each $x \in I$ which implies that

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \begin{vmatrix} y_1(x) & cy_1(x) \\ y'_1(x) & cy'_1(x) \end{vmatrix} = cy_1(x)y'_1(x) - cy_1(x)y'_1(x) = 0 \text{ for all } x \in I.$$

Conversely, if $y_1(x)y_2'(x) - y_2(x)y_1'(x) = 0$ for all $x \in I$, then

$$\frac{y_1'(x)}{y_1(x)} = \frac{y_2'(x)}{y_2(x)} \quad \text{whenever } y_1(x), \ y_2(x) \neq 0 \implies y_2(x) = cy_1(x) \quad \text{for } x \in I,$$

which implies that y_1 and y_2 are linearly dependent in I.

Example The functions $f(x) = x^2$ and $g(x) = 2x^2$ are linearly dependent, but $f(x) = e^x$ and $g(x) = xe^x$ are linearly independent.

Principle of Superposition If $y_1(x)$ and $y_2(x)$ are solutions of the linear homogeneous differential equation

(*)
$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0, \quad x \in I,$$

and if c_1 and c_2 are constants, then the linear combination

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

is also a solution of the linear homogeneous differential equation (*).

Theorem 1 If $y_1(x)$ and $y_2(x)$ are linearly independent solutions of the linear homogeneous differential equation

(*)
$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0, \quad x \in I,$$

then the general solution (*) is given by the linear combination

 $y(x) = c_1 y_1(x) + c_2 y_2(x)$, where c_1, c_2 are arbitrary constants.

Theorem 2 If $y_1(x)$ and $y_2(x)$ are linearly independent solutions of

(*)
$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0, \quad x \in I,$$

and if $y_p(x)$ is a particular solution of

$$(\dagger) \quad \frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = G(x), \quad x \in I,$$

then the general solution of (\dagger) is given by

$$y(x) = y_p(x) + c_1y_1(x) + c_2y_2(x) =$$
a linear combination of y_1 and y_2

where c_1 and c_2 are arbitrary constants.

Remark The space of solutions for a second order linear differential equation (†) can be viewed as a space parametrized by $c_1, c_2 \in \mathbb{R}$ and is a space of dimension 2. Thus if we know two particular linearly independent solutions, then we know every solution.

In general, it's not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so for a second order linear homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

where $a \neq 0$, b and c are constants.

Since $y = e^{rx}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y' = re^{rx}$. Furthermore, $y'' = r^2 e^{rx}$. If we substitute these expressions into the above second-order constant coefficients differential equation we see that $y = e^{rx}$ is a solution if

$$(ar^{2} + br + c)e^{rx} = 0 \iff ar^{2} + br + c = 0 \text{ since } e^{rx} \neq 0 \text{ for all } x,$$

where the algebraic equation $ar^2 + br + c = 0$ is called the auxiliary equation (or characteristic equation) of the differential equation ay'' + by' + cy = 0.

Definition The polar form of a complex number expresses a number in terms of an angle θ and its distance from the origin r. Given a complex number in rectangular form expressed as z = x + iy, since

$$x = r\cos\theta$$
 $y = r\sin\theta$ $r = \sqrt{x^2 + y^2}$

we have

$$z = x + iy = r(\cos\theta + i\sin\theta)$$

where r is the modulus and θ is the argument. We often use the abbreviation $r \operatorname{cis} \theta$ to represent $r(\cos \theta + i \sin \theta)$.

Since

$$(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2) = \cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2),$$

we define

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 for $\theta \in \mathbb{R} \implies |e^{i\theta}| = 1$ for all $\theta \in \mathbb{R}$ and $e^{i\theta_1} e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$

If z = x + iy for $x, y \in \mathbb{R}$, then

$$z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}, \text{ where } r = |z| = \sqrt{x^2 + y^2}, x = r \cos \theta, y = r \sin \theta$$
$$e^z = e^{x + iy} = e^x(\cos y + i \sin y) \implies |e^z| = e^x.$$

Examples Find the polar form of (a) z = 4i, (b) z = -4 + 4i, (c) $z = \sqrt{3} + i$. **Theorem** The general solution of the differential equation ay'' + by' + cy = 0 is

(1) $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ when $b^2 - 4ac > 0$ and $r_1 \neq r_2 \in \mathbb{R}$ are two distinct real roots of $ar^2 + br + c = 0$ given by

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

(2) $y = c_1 e^{r_1 x} + c_2 e^{r_2 x} = e^{\alpha x} [c_3 \cos \beta x + i c_4 \sin \beta x]$ when $b^2 - 4ac < 0$ and $r_1 = \alpha + i\beta \neq r_2 = \alpha - i\beta \in \mathbb{C}$ are two distinct complex roots of $ar^2 + br + c = 0$ given by

$$r_1 = \alpha + i\beta = \frac{-b + i\sqrt{4ac - b^2}}{2a}, \ r_2 = \alpha - i\beta = \frac{-b - i\sqrt{4ac - b^2}}{2a} = \bar{r}_1 = \text{complex conjugate of } r_1$$

Note that

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} = c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x}$$

= $c_1 e^{\alpha x} (\cos \beta x + i \sin \beta x) + c_2 e^{\alpha x} (\cos \beta x - i \sin \beta x)$
= $e^{\alpha x} [(c_1 + c_2) \cos \beta x + i(c_1 - c_2) \sin \beta x]$
= $e^{\alpha x} [c_3 \cos \beta x + ic_4 \sin \beta x]$, where $c_3 = c_1 + c_2$, $c_4 = c_1 - c_2$.

(3) $y = c_1 e^{rx} + c_2 x e^{rx}$ when $b^2 - 4ac = 0$ and r is the only real root of $ar^2 + br + c = 0$.

Remarks

1. Let
$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. Since

$$0 = ay'' + by' + cy = a \left[\frac{d^2y}{dx^2} - (r_1 + r_2)\frac{dy}{dx} + r_1r_2y\right]$$

$$= a \left(\frac{d}{dx} - r_2\right) \left(\frac{dy}{dx} - r_1y\right) \stackrel{\text{or}}{=} a \left(\frac{d}{dx} - r_1\right) \left(\frac{dy}{dx} - r_2y\right),$$

 $y_1 = e^{r_1 x}$ and $y_2 = e^{r_2 x}$ are solutions of the differential equation ay'' + by' + cy = 0. 2. If $b^2 - 4ac = 0$, since

$$0 = ar^{2} + br + c = a(r^{2} + \frac{b}{a}r + \frac{c}{a}) = a(r + \frac{b}{2a})^{2} \implies r = -\frac{b}{2a}$$

 $y_1 = e^{rx}$ is a solution of ay'' + by' + cy = 0.

To find a 2nd linearly independent solution of ay'' + by' + cy = 0, we set $y_2 = vy_1$ and substitute it into the equation to get

$$0 = ay''_{2} + by'_{2} + cy_{2} = a(vy_{1})'' + b(vy_{1})' + c(vy_{1})$$

$$= a(vy''_{1} + 2v'y'_{1} + v''y_{1}) + b(vy'_{1} + v'y_{1}) + c(vy_{1})$$

$$= v(ay''_{1} + by'_{1} + cy_{1}) + (2av'y'_{1} + bv'y_{1}) + v''y_{1}$$

$$= (2av'ry_{1} + bv'y_{1}) + v''y_{1} = (2ar + b)v'y_{1} + v''y_{1}$$

$$= v''y_{1}$$

$$\implies v'' = 0 \implies v = c_{1}x + c_{2} \text{ and } c_{1} \neq 0.$$

Hence $y_2 = xy_1$ is a 2nd linearly independent solution.

Examples Solve the differential equation

(1) y'' + y' - 6y = 0.(2) 3y'' + y' - y = 0.(3) 4y'' + 12y' + 9y = 0.(4) y'' - 6y' + 13y = 0.

An initial-value problem for the second-order differential equation $P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x), x \in I$, consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$y(x_0) = y_0, \quad y'(x_0) = y_1 \quad \text{for some } x_0 \in I,$$

where y_0 and y_1 are given constants. If P, Q, R and G are continuous on I and $P(x) \neq 0$ for $x \in I$, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initial-value problem.

Example Solve the initial-value problem

$$y'' + y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = 0$.

A boundary-value problem for the second-order differential equation $P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x), x \in I$, consists of finding a solution y of the differential equation that also satisfies boundary conditions of the form

 $y(x_0) = y_0$, $y(x_1) = y_1$ where x_0 , x_1 are boundary points (or end points) of I.

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.

Example Solve the boundary-value problem $y'' + 2y' + y = e^{-x}$, y(0) = 1, y(1) = 3.

Solution : Since the characteristic equation $0 = r^2 + 2r + 1 = (r+1)^2$ has a double root r = -1, $y_1(x) = e^{-x}$ and $y_2(x) = xe^{-x}$ are linearly independent homogeneous solutions of y'' + 2y' + y = 0. To find a particular solution y_p of $y'' + 2y' + y = e^{-x}$, we set $y_p(x) = Ax^2e^{-x}$ and use the method of undetermined coefficients to get $A = \frac{1}{2}$ and the general solution $y(x) = \frac{1}{2}x^2e^{-x} + C_1e^{-x} + C_2xe^{-x}$, where C_1 , C_2 are arbitrary constants. Using the boundary conditions y(0) = 1 and y(1) = 3, we get $C_1 = 1$, $C_2 = 3e - \frac{3}{2}$, and $y(x) = \frac{1}{2}x^2e^{-x} + e^{-x} + (3e - \frac{3}{2})xe^{-x}$.

Theorem Consider the second-order nonhomogeneous linear differential equations with constant coefficients

$$(*) \qquad ay'' + by' + cy = G(x), \quad x \in I$$

where a, b and c are constants and G(x) is continuous for $x \in I$.

1. If $y_{p_1}(x)$ and $y_{p_2}(x)$ are two (particular) solutions of (*), then $y_{p_1}(x) - y_{p_2}(x)$ is a (homogeneous) solution of the (homogeneous) equation

$$ay'' + by' + cy = 0, \quad x \in I.$$

2. The general solution of (*) can be written as

$$y(x) = y_p(x) + y_h(x),$$

where $y_p(x)$ is a particular solution of (*) and $y_h(x)$ is the general (homogeneous) solution of the homogeneous equation

$$ay'' + by' + cy = 0, \quad x \in I.$$

The Method of Undetermined Coefficients is used to find a particular solution of the second-order nonhomogeneous linear differential equations with constant coefficients

(*)
$$ay'' + by' + cy = G(x), x \in I.$$

1. If $G(x) = e^{kx} P(x)$, where P(x) is a polynomial of degree n, then try

$$y_p(x) = e^{kx}Q(x),$$

where Q(x) is an n^{th} -degree polynomial (whose coefficients are determined by substituting in the differential equation).

2. If $G(x) = e^{kx}P(x)\cos mx$ or $G(x) = e^{kx}P(x)\sin mx$, where P(x) is an nth-degree polynomial, then try

 $y_p(x) = e^{kx}Q(x)\cos mx + e^{kx}R(x)\sin mx,$

where Q(x), R(x) are n^{th} -degree polynomials.

Modification: If any term of y_p is a solution of the homogeneous differential equation, multiply y_p by x (or by x^2 if necessary).

Example Solve the initial-value problem $y'' + y' - 2y = x^2 + \sin x + e^x$, y(0) = 1, y'(0) = 2. Solution : Since the characteristic equation

$$0 = r^{2} + r - 2 = (r+2)(r-1)$$

has roots r = -2 or 1, $y_1(x) = e^{-2x}$ and $y_2(x) = e^x$ are linearly independent homogeneous solutions of

$$y'' + y' - 2y = 0$$

To find a particular solution y_p of $y'' + y' - 2y = x^2 + \sin x + e^x$, we set

$$y_p(x) = A_2 x^2 + A_1 x + A_0 + B \cos x + C \sin x + D x e^x$$

and use the method of undetermined coefficients to get $A_2 = A_1 = -\frac{1}{2}$, $A_0 = -\frac{3}{4}$, $B = -\frac{1}{10}$, $C = -\frac{3}{10}$, $D = \frac{1}{3}$, and the general solution

$$y(x) = -\frac{x^2}{2} - \frac{x}{2} - \frac{3}{4} - \frac{1}{10}\cos x - \frac{3}{10}\sin x + \frac{1}{3}xe^x + C_1e^{-2x} + C_2e^x,$$

where C_1 , C_2 are arbitrary constants. Using the initial conditions y(0) = 1 and y'(0) = 2, we obtain $C_1 = -\frac{37}{180}$, $C_2 = \frac{37}{18}$, and the solution $y(x) = y_p(x) - \frac{37}{180}e^{-2x} + \frac{37}{18}e^x$.

The Method of Variation of Parameters is used to find a particular solution of the nonhomogeneous equation $ay'' + by' + cy = G(x), x \in I$, of the form

(†)
$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x) \quad x \in I,$$

where y_1 and y_2 are linearly independent (homogeneous) solutions of the (homogeneous) equation

$$ay'' + by' + cy = 0.$$

This method is called variation of parameters because we have varied the parameters c_1 and c_2 to make them functions.

Differentiating Equation (\dagger) , we get

$$(\dagger') \qquad y'_p = (u'_1y_1 + u'_2y_2) + (u_1y'_1 + u_2y'_2), \quad x \in I.$$

Since u_1 and u_2 are arbitrary functions, we can impose two conditions on them.

One condition is that y_p is a solution of the differential equation; we can choose the other condition so as to simplify our calculations. In view of the expression in Equation (†'), let's impose the condition that

 $(\dagger \dagger)$ $u'_1 y_1 + u'_2 y_2 = 0, \quad x \in I.$

Substituting (††) into (†'), we get $y'_p = u'_1y_1 + u'_2y_2 + u_1y'_1 + u_2y'_2 = u_1y'_1 + u_2y'_2$ for $x \in I$ and that

 $(\dagger'') \qquad y_p'' = u_1'y_1' + u_2'y_2' + u_1y_1'' + u_2y_2'', \quad x \in I.$

Substituting $(\dagger), (\dagger')$ and (\dagger'') in the differential equation $ay'' + by' + cy = G(x), x \in I$, we get

$$\begin{aligned} a(u_1'y_1' + u_2'y_2' + u_1y_1'' + u_2y_2'') + b(u_1y_1' + u_2y_2') + c(u_1y_1 + u_2y_2) &= G \\ \implies \quad u_1(ay_1'' + by_1' + cy_1) + u_2(ay_2'' + by_2' + cy_2) + a(u_1'y_1' + u_2'y_2') &= G \\ \implies \quad (\dagger\dagger') \qquad \quad a(u_1'y_1' + u_2'y_2') &= G \quad \text{since } y_1, y_2 \text{ are homogeneous solutions} \end{aligned}$$

Thus u'_1 , u'_2 are solutions of the system (\dagger \dagger), (\dagger \dagger')

$$\begin{pmatrix} u_1'y_1 + u_2'y_2 = 0\\ u_1'y_1' + u_2'y_2' = \frac{G}{a} \end{pmatrix} \implies \begin{pmatrix} y_1 & y_2\\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} u_1'\\ u_2' \end{pmatrix} = \begin{pmatrix} 0\\ \frac{G}{a} \end{pmatrix} \implies \begin{pmatrix} u_1'\\ u_2' \end{pmatrix} = \frac{1}{y_1y_2' - y_2y_1'} \begin{pmatrix} y_2' & -y_2\\ -y_1' & y_1 \end{pmatrix} \begin{pmatrix} 0\\ \frac{G}{a} \end{pmatrix}$$

Example Solve the differential equation $y'' + y = \tan x, \ 0 < x < \frac{\pi}{2}.$

Solution : Since the characteristic equation $r^2 + 1 = 0$ has roots $r = \pm i$, $y_1(x) = \cos x$ and $y_2(x) = \sin x$ are linearly independent homogeneous solutions.

Let $y_p = u_1 y_1 + u_2 y_2$ be a particular solution with u'_1 , u'_2 satisfying

$$\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{\sin x}{\cos x} \\ \frac{\sin x}{\cos x} \end{pmatrix}$$
$$\implies \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} -\sin^2 x \\ \frac{\cos x}{\sin x} \end{pmatrix} = \begin{pmatrix} -\sec x + \cos x \\ \sin x \end{pmatrix}$$
$$\implies \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -\ln|\sec x + \tan x| + \sin x \\ -\cos x \end{pmatrix}$$

Then the general solution is

$$y = (-\ln|\sec x + \tan x| + \sin x)\cos x - \cos x \sin x + C_1 \cos x + C_2 \sin x$$

= $-\cos x \ln|\sec x + \tan x| + C_1 \cos x + C_2 \sin x$,

where C_1 , C_2 are arbitrary constants.