Calculus Study Guide 10 Spring 2022

Second-Order Linear Equations

A second-order linear differential equation on I can be written as

d’y dy

— + Px)—=+Qzx)y=G(x), xel,

U P 4+ Qe = Ol

where P, () and G are arbitrary functions of the independent variable x € I. Particularly impor-
tant are the constant-coefficient equations, where P and @) (but not necessarily GG) are constants,

and the homogeneous equations, where G(z) = 0 for all z € I.

Thus the form of a second-order linear homogeneous differential equation is

d’y dy

— + P(x)-—= =0

12 + P(x) e +Q(x)y

If G(x) # 0 for some x € I, it is called a nonhomogeneous differential equation.

Definition A general solution to a second-order linear differential equation is a solution con-
taining two arbitrary constants of integration. A particular solution is derived from the general
solution by setting the constants of integration to values that satisfy the initial value conditions
of the problem.

Definition Two functions y; and y, are said to be linearly independent in [ if neither y; nor ys
is a constant multiple of the other throughout I.

Remark Two differentiable functions y; and y, are linearly independent in I = (a, b) if and only
if

n(@) wa(r)) e yi() va(2) =y () () — yo ()Y () = or all =
v () yh(x) —dt(y,l(x) yé(x)) y1(2)ya(z) — y2(z)yy(x) =0 forall z € I.

Proof If y; and y, are linearly dependent, then there exists a constant ¢ € R such that ys(x) =
cyi(x) for each x € I which implies that

yi(r) cy(w)
yi(z) cyi(z)

= ey (2)yy(x) — ayp(x)yy(xz) =0 for all x € 1.

Conversely, if y; (x)ys(x) — ya2(x)y)(x) = 0 for all z € I, then

/

Yy () _ Ys()
yi(x)  ya(x)

whenever y;(x), y2(z) # 0 = yo(z) = cyr(z) for x € I,

which implies that y; and y, are linearly dependent in /.

Example The functions f(z) = x* and g(z) = 22? are linearly dependent, but f(z) = e* and
g(x) = xe® are linearly independent.

Principle of Superposition If y;(x) and ys(z) are solutions of the linear homogeneous differ-

ential equation
d*y

d
() 5+ P +QEy=0, zel,

and if ¢; and ¢y are constants, then the linear combination
y(z) = a1y () + caya ()

is also a solution of the linear homogeneous differential equation (x).
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Theorem 1 If y;(x) and ys(x) are linearly independent solutions of the linear homogeneous
differential equation
d? d
() 5+ P@) L +Q)y =0, zel,

dz?

then the general solution (x) is given by the linear combination

y(x) = 1y (z) + coya(x),  where ¢q, ¢o are arbitrary constants.

Theorem 2 If y;(x) and yo(z) are linearly independent solutions of

d*y dy
(*) @er(x)@JrQ(x)y—O, rel,

and if y,(z) is a particular solution of

() Ut P@) Y 1 Q= G, wel

then the general solution of (1) is given by
y(z) = yp(z) + cry1(z) + c2y2(2) = a linear combination of y; and y,

where ¢; and ¢y are arbitrary constants.

Remark The space of solutions for a second order linear differential equation (f) can be viewed
as a space parametrized by ¢, co € R and is a space of dimension 2. Thus if we know two
particular linearly independent solutions, then we know every solution.

In general, it’s not easy to discover particular solutions to a second-order linear equation. But
it is always possible to do so for a second order linear homogeneous equation with constant
coefficients » p
Y Y
a—2 4+b=—=+cy =0

dx? dr Y

where a # 0, b and c¢ are constants.

Since y = €"* (where r is a constant) has the property that its derivative is a constant multiple
of itself: y = re™. Furthermore, y” = r?e’®. If we substitute these expressions into the above
second-order constant coefficients differential equation we see that y = €'* is a solution if

(ar® +br+c)e =0 <= ar’ +br+c=0 since e’ # 0 for all =,

where the algebraic equation ar® + br + ¢ = 0 is called the auxiliary equation (or characteristic
equation) of the differential equation ay” + by’ + cy = 0.

Definition The polar form of a complex number expresses a number in terms of an angle 6
and its distance from the origin r. Given a complex number in rectangular form expressed as

z =T + 1y, since
r=rcosl y=rsind r=+/22+7y2

we have
z=x+1y =7r(cos +isinb),

where 7 is the modulus and 6 is the argument. We often use the abbreviation rcis 6 to represent
r(cosf +isin@).
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Since
(cosfy +isinby) (cosby + isinby) = cos(fy + 62) + isin(f; + s),

we define
¢ = cosf+isinf forf e R = [¢| =1 for all # € R and e %2 = ¢/1502),
If z=2+ 1y for x, y € R, then

z = x+iy=r(cosh +isinf) =re?, where r = |z| = /22 + 42, £ = rcosf, y = rsinf

e® = "t =¢(cosy +isiny) = |¢F] = €.
Examples Find the polar form of (a) z = 4i, (b) 2 = —4 + 4i, (c) z = V3 + .
Theorem The general solution of the differential equation ay” + by’ + cy = 0 is

T

(1) y = 1" 4 c9e™* when b> —4dac > 0 and 1 # o € R are two distinct real roots of
ar? 4+ br + ¢ = 0 given by

_ —b+ Vb —4ac —b—Vb? —4dac

2a "= 2a

1

(2) y = c1™” + e = e*"[c3 cos B + icysin fz] when b® — 4dac < 0 and 7] = a + i3 # 1y =
a — i3 € C are two distinct complex roots of ar? + br + ¢ = 0 given by

—b + iv/4ac — b2 . a—if —b — iv/4ac — b?
, I'g = Q— =

r=a+iff = o 9

71 = complex conjugate of ry.
Note that

y = c1e 4 et = cle(‘”iﬁ)x + @e““"mx
c1e*%(cos fx + isin fx) 4+ cee®(cos fx — isin fx)
= e"[(c1 + ¢2) cos Bz +i(cr — ¢2) sin Bz

= ™[cgcos fr + icysin fx], where c3 = ¢ 4+ ¢9, ¢4 = ¢1 — Co.

(3) y = c1e”™ + cywe”™ when b* — 4ac = 0 and r is the only real root of ar? + br + ¢ = 0.

Remarks
—b+/b? — 4dac —b—Vb% —4dac .
1. Let ry = and ro = . Since
2a 2a
d? d
0 = ay/+by+cy=a [d_xz —(r + 7’2)£ + rszy}

= a i—r @—r =a i—r @—r
N dz 2 dx W)= dz ! dx )

y1 = e"" and y, = ™% are solutions of the differential equation ay” + by’ + cy = 0.
2. If b* — dac = 0, since

b
0:ar2+br—|—c:a(7“2+—r+f):a(r+—)2 == r=—7
a a
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y1 = €' is a solution of ay” + by’ + cy = 0.
To find a 2°! linearly independent solution of ay” + by’ + cy = 0, we set v, = vy, and
substitute it into the equation to get

0 = ayy +bys +cya = alvyn)” + bloyr) + c(vy)
= a(vy] +20'y; +0"y1) + b(vyy + V'yr1) + c(vy)
= v(ay] +by) + cyr) + (2av'y; + bv'yr) + 0"y
= (2av'ry; +b'y)) + 0"y = 2ar + b)v'y; + 0"y
V"
— v =0 = v=cx+cand ¢; #0.

Hence vy = zy; is a 2°¢ linearly independent solution.

Examples Solve the differential equation

(1) y"+y" —6y =0. (3) 49" + 12y 4+ 9y = 0.
(2) 3" +y —y=0. (4) 4" — 6y + 13y = 0.

d? d
An initial-value problem for the second-order differential equation P(a:)d—ag + Q(x)% +R(z)y =

G(x), x € I, consists of finding a solution y of the differential equation that also satisfies initial
conditions of the form

y(zo) = yo, Y'(xo) =11 for somexg € I,

where yy and y; are given constants. If P, @), R and G are continuous on I and P(z) # 0 for
x € I, then a theorem found in more advanced books guarantees the existence and uniqueness
of a solution to this initial-value problem.

Example Solve the initial-value problem

y'+y —6y=0, y0) =1, y'(0)=0.

d? d
A boundary-value problem for the second-order differential equation P(x)d_x:g + Q(m)ﬁ +

R(x)y = G(z), v € I, consists of finding a solution y of the differential equation that also
satisfies boundary conditions of the form

y(xo) = yo, y(z1) =wy1 wherexy, x; are boundary points (or end points) of I.

In contrast with the situation for initial-value problems, a boundary-value problem does not
always have a solution.

Example Solve the boundary-value problem y" + 2y’ +y = ¢, y(0) = 1, y(1) = 3.

Solution : Since the characteristic equation 0 = r*+2r+1 = (r+1)? has a double root r = —1,
yi1(x) = e " and y»(x) = xe” " are linearly independent homogeneous solutions of 3" +2y' +y = 0.

¥ we set y,(r) = Az’e”" and use the method of

To find a particular solution y, of y"+2y' +y = e~
undetermined coefficients to get A = 5 and the general solution y(z) = —2%e *+Cie " +Chze ",
where C4, Cy are arbitrary constants. Using the boundary conditions y(0) = 1 and y(1) = 3, we

3 1 3
get C1 =1, Cy = 3e — 2 and y(x) = 5&526_9” +e "+ (3e — 5)936_”.
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Theorem Consider the second-order nonhomogeneous linear differential equations with constant
coefficients

(x)  ay'+by+cy=G(z), zel

where a,b and ¢ are constants and G(x) is continuous for x € .

1. If y,, (x) and y,,(z) are two (particular) solutions of (x), then y,, (z) — y,,(z) is a (homoge-
neous) solution of the (homogeneous) equation

ay’ +by +cy=0, xel
2. The general solution of (%) can be written as

y(2) = () + (),
where y,(x) is a particular solution of () and yp,(x) is the general (homogeneous) solution
of the homogeneous equation

ay’ +by +cy=0, ze€l.

The Method of Undetermined Coefficients is used to find a particular solution of the
second-order nonhomogeneous linear differential equations with constant coefficients

()  ay'+b) +cy=G(x), zel
1. If G(z) = e P(z), where P(x) is a polynomial of degree n, then try

yp(x) = € Q(),
where Q(x) is an n'-degree polynomial (whose coefficients are determined by substituting
in the differential equation).

2. If G(x) = " P(z) cosma or G(z) = " P(x)sinmaz, where P(z) is an n'"-degree polyno-
mial, then try
y,(2) = e Q(z) cos mx + " R(z) sin ma,

where Q(z), R(x) are n*™-degree polynomials.

Modification: If any term of y, is a solution of the homogeneous differential equation, multiply
yp by @ (or by z? if necessary).
Example Solve the initial-value problem 3" 49 — 2y = 2* + sinx + €*, y(0) = 1, 5/'(0) = 2.

Solution : Since the characteristic equation

O=r*+r—2=(r+2)(r—1)

has roots r = —2 or 1, y1(z) = e 2 and y»(x) = €” are linearly independent homogeneous

solutions of
y' +vy —2y=0.

To find a particular solution y, of y” + ¢ — 2y = 2 +sinz + ", we set

yp(z) = Agx? + Ay + Ay + Beosz + Csinx + Dxe®
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and use the method of undetermined coefficients to get Ay = A} = —3 Ay = 7 B =
1 3 1
10 ¢ "1 D= 3’ and the general solution
2 3 1 3 1
y(x) = —% — g ~ 7T 198t - Esinx + gxex + Cre™ + Cye®,
where C}, Cy are arbitrary constants. Using the initial conditions y(0) = 1 and y'(0) = 2, we
37 37 37 37

obtain C} = T Cy = T and the solution y(z) = y,(z) — ﬁe_zz + 1—863’.

The Method of Variation of Parameters is used to find a particular solution of the nonho-
mogeneous equation ay” + by’ + ¢y = G(x), x € I, of the form

) w(@) = @) + w@pnE) el
where y; and ys are linearly independent (homogeneous) solutions of the (homogeneous) equation
ay” + by + cy = 0.

This method is called variation of parameters because we have varied the parameters ¢; and ¢y

to make them functions.

Differentiating Equation (), we get
1)y = Wy +uhye) + (way) +uayy), z €1

Since u; and us are arbitrary functions, we can impose two conditions on them.

One condition is that y, is a solution of the differential equation; we can choose the other
condition so as to simplify our calculations. In view of the expression in Equation ('), let’s
impose the condition that

(1) wp +ubys =0, z €.

Substituting (1) into (1'), we get y, =u|y1 + uhys + wryy + usyy = wry) + gy, for x € I and
that

(1) oy =Wy +uoys +uayl +ugyy, vl
Substituting (1), (') and (1”) in the differential equation ay” + by’ + cy = G(x), = € I, we get
a(uryy + uzyy +uryl + uayz) + b(uryy +uayy) + clurys +usye) = G

— wi(ay) +byy + cyn) + ua(ayy + bys + cy2) + alwiy) +uzys) = G
= ({1 a(uly) +ubysy) = G since yp, yo are homogeneous solutions.

Thus u}, v, are solutions of the system (1), (11')

whyr + ubys =0
1 2Y2 U Yo u, 0 ! X vy —ys
— — — T —
I, I, G YA ul G . Y1Ys — YU o
uryy + sy = ” Y1 Y2 2 o 2 B W

Example Solve the differential equation 4" +y =tanz, 0 < x < g
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Solution: Since the characteristic equation 7> + 1 = 0 has roots r = =i, y;(z) = cosx and
y2(x) = sinx are linearly independent homogeneous solutions.

Let y, = u1y1 + uays be a particular solution with w}, u} satisfying

cosr sinx u) 0
. , | | sinz
—sinz cosxz) \u
cos
2
—sin”x
u} o —secx + cosx
— _ | cosx
ul, : sin x
sin
Uy —In|secx + tan x| + sinx
— =
Us —cosx
Then the general solution is
y = (—In|secz + tanz|+ sinx)cosx — cosxsinz 4+ Cy cosx + Cysinw

= —cosxlIn|secx + tanz| + C; cosx + Cysinz,

where C, 5y are arbitrary constants.
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