Second-Order Linear Equations

A second-order linear differential equation on I can be written as

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=G(x), \quad x \in I
$$

where P, Q and G are arbitrary functions of the independent variable $x \in I$. Particularly important are the constant-coefficient equations, where P and Q (but not necessarily G) are constants, and the homogeneous equations, where $G(x)=0$ for all $x \in I$.
Thus the form of a second-order linear homogeneous differential equation is

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

If $G(x) \neq 0$ for some $x \in I$, it is called a nonhomogeneous differential equation.
Definition A general solution to a second-order linear differential equation is a solution containing two arbitrary constants of integration. A particular solution is derived from the general solution by setting the constants of integration to values that satisfy the initial value conditions of the problem.
Definition Two functions y_{1} and y_{2} are said to be linearly independent in I if neither y_{1} nor y_{2} is a constant multiple of the other throughout I.
Remark Two differentiable functions y_{1} and y_{2} are linearly independent in $I=(a, b)$ if and only if

$$
\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=\operatorname{det}\left(\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=0 \quad \text { for all } x \in I
$$

Proof If y_{1} and y_{2} are linearly dependent, then there exists a constant $c \in \mathbb{R}$ such that $y_{2}(x)=$ $c y_{1}(x)$ for each $x \in I$ which implies that

$$
\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{ll}
y_{1}(x) & c y_{1}(x) \\
y_{1}^{\prime}(x) & c y_{1}^{\prime}(x)
\end{array}\right|=c y_{1}(x) y_{1}^{\prime}(x)-c y_{1}(x) y_{1}^{\prime}(x)=0 \quad \text { for all } x \in I .
$$

Conversely, if $y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)=0$ for all $x \in I$, then

$$
\frac{y_{1}^{\prime}(x)}{y_{1}(x)}=\frac{y_{2}^{\prime}(x)}{y_{2}(x)} \quad \text { whenever } y_{1}(x), y_{2}(x) \neq 0 \Longrightarrow y_{2}(x)=c y_{1}(x) \quad \text { for } x \in I
$$

which implies that y_{1} and y_{2} are linearly dependent in I.
Example The functions $f(x)=x^{2}$ and $g(x)=2 x^{2}$ are linearly dependent, but $f(x)=e^{x}$ and $g(x)=x e^{x}$ are linearly independent.
Principle of Superposition If $y_{1}(x)$ and $y_{2}(x)$ are solutions of the linear homogeneous differential equation

$$
(*) \quad \frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad x \in I,
$$

and if c_{1} and c_{2} are constants, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution of the linear homogeneous differential equation $(*)$.

Theorem 1 If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of the linear homogeneous differential equation

$$
(*) \quad \frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad x \in I
$$

then the general solution $(*)$ is given by the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { where } c_{1}, c_{2} \text { are arbitrary constants. }
$$

Theorem 2 If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of

$$
(*) \quad \frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad x \in I
$$

and if $y_{p}(x)$ is a particular solution of

$$
(\dagger) \quad \frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=G(x), \quad x \in I
$$

then the general solution of (\dagger) is given by

$$
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x)=\text { a linear combination of } y_{1} \text { and } y_{2}
$$

where c_{1} and c_{2} are arbitrary constants.
Remark The space of solutions for a second order linear differential equation (\dagger) can be viewed as a space parametrized by $c_{1}, c_{2} \in \mathbb{R}$ and is a space of dimension 2 . Thus if we know two particular linearly independent solutions, then we know every solution.
In general, it's not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so for a second order linear homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

where $a \neq 0, b$ and c are constants.
Since $y=e^{r x}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y^{\prime}=r e^{r x}$. Furthermore, $y^{\prime \prime}=r^{2} e^{r x}$. If we substitute these expressions into the above second-order constant coefficients differential equation we see that $y=e^{r x}$ is a solution if

$$
\left(a r^{2}+b r+c\right) e^{r x}=0 \Longleftrightarrow a r^{2}+b r+c=0 \quad \text { since } e^{r x} \neq 0 \text { for all } x,
$$

where the algebraic equation $a r^{2}+b r+c=0$ is called the auxiliary equation (or characteristic equation) of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
Definition The polar form of a complex number expresses a number in terms of an angle θ and its distance from the origin r. Given a complex number in rectangular form expressed as $z=x+i y$, since

$$
x=r \cos \theta \quad y=r \sin \theta \quad r=\sqrt{x^{2}+y^{2}}
$$

we have

$$
z=x+i y=r(\cos \theta+i \sin \theta)
$$

where r is the modulus and θ is the argument. We often use the abbreviation $r \operatorname{cis} \theta$ to represent $r(\cos \theta+i \sin \theta)$.

Since

$$
\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)=\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)
$$

we define

$$
e^{i \theta}=\cos \theta+i \sin \theta \quad \text { for } \theta \in \mathbb{R} \Longrightarrow\left|e^{i \theta}\right|=1 \text { for all } \theta \in \mathbb{R} \text { and } e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)} .
$$

If $z=x+i y$ for $x, y \in \mathbb{R}$, then

$$
\begin{aligned}
z & =x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta}, \quad \text { where } r=|z|=\sqrt{x^{2}+y^{2}}, x=r \cos \theta, y=r \sin \theta \\
e^{z} & =e^{x+i y}=e^{x}(\cos y+i \sin y) \Longrightarrow\left|e^{z}\right|=e^{x}
\end{aligned}
$$

Examples Find the polar form of $(a) z=4 i,(b) z=-4+4 i,(c) z=\sqrt{3}+i$.
Theorem The general solution of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is
(1) $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ when $b^{2}-4 a c>0$ and $r_{1} \neq r_{2} \in \mathbb{R}$ are two distinct real roots of $a r^{2}+b r+c=0$ given by

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

(2) $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}=e^{\alpha x}\left[c_{3} \cos \beta x+i c_{4} \sin \beta x\right]$ when $b^{2}-4 a c<0$ and $r_{1}=\alpha+i \beta \neq r_{2}=$ $\alpha-i \beta \in \mathbb{C}$ are two distinct complex roots of $a r^{2}+b r+c=0$ given by
$r_{1}=\alpha+i \beta=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}, r_{2}=\alpha-i \beta=\frac{-b-i \sqrt{4 a c-b^{2}}}{2 a}=\bar{r}_{1}=$ complex conjugate of r_{1}.
Note that

$$
\begin{aligned}
y & =c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}=c_{1} e^{(\alpha+i \beta) x}+c_{2} e^{(\alpha-i \beta) x} \\
& =c_{1} e^{\alpha x}(\cos \beta x+i \sin \beta x)+c_{2} e^{\alpha x}(\cos \beta x-i \sin \beta x) \\
& =e^{\alpha x}\left[\left(c_{1}+c_{2}\right) \cos \beta x+i\left(c_{1}-c_{2}\right) \sin \beta x\right] \\
& =e^{\alpha x}\left[c_{3} \cos \beta x+i c_{4} \sin \beta x\right], \quad \text { where } c_{3}=c_{1}+c_{2}, c_{4}=c_{1}-c_{2} .
\end{aligned}
$$

(3) $y=c_{1} e^{r x}+c_{2} x e^{r x}$ when $b^{2}-4 a c=0$ and r is the only real root of $a r^{2}+b r+c=0$.

Remarks

1. Let $r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$. Since

$$
\begin{aligned}
0 & =a y^{\prime \prime}+b y^{\prime}+c y=a\left[\frac{d^{2} y}{d x^{2}}-\left(r_{1}+r_{2}\right) \frac{d y}{d x}+r_{1} r_{2} y\right] \\
& =a\left(\frac{d}{d x}-r_{2}\right)\left(\frac{d y}{d x}-r_{1} y\right) \stackrel{\text { or }}{=} a\left(\frac{d}{d x}-r_{1}\right)\left(\frac{d y}{d x}-r_{2} y\right),
\end{aligned}
$$

$y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$ are solutions of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
2. If $b^{2}-4 a c=0$, since

$$
0=a r^{2}+b r+c=a\left(r^{2}+\frac{b}{a} r+\frac{c}{a}\right)=a\left(r+\frac{b}{2 a}\right)^{2} \Longrightarrow r=-\frac{b}{2 a},
$$

$y_{1}=e^{r x}$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$.
To find a $2^{\text {nd }}$ linearly independent solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$, we set $y_{2}=v y_{1}$ and substitute it into the equation to get

$$
\begin{aligned}
0 & =a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=a\left(v y_{1}\right)^{\prime \prime}+b\left(v y_{1}\right)^{\prime}+c\left(v y_{1}\right) \\
& =a\left(v y_{1}^{\prime \prime}+2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1}\right)+b\left(v y_{1}^{\prime}+v^{\prime} y_{1}\right)+c\left(v y_{1}\right) \\
& =v\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+\left(2 a v^{\prime} y_{1}^{\prime}+b v^{\prime} y_{1}\right)+v^{\prime \prime} y_{1} \\
& =\left(2 a v^{\prime} r y_{1}+b v^{\prime} y_{1}\right)+v^{\prime \prime} y_{1}=(2 a r+b) v^{\prime} y_{1}+v^{\prime \prime} y_{1} \\
& =v^{\prime \prime} y_{1} \\
& \Longrightarrow v^{\prime \prime}=0 \Longrightarrow v=c_{1} x+c_{2} \text { and } c_{1} \neq 0 .
\end{aligned}
$$

Hence $y_{2}=x y_{1}$ is a $2^{\text {nd }}$ linearly independent solution.
Examples Solve the differential equation
(1) $y^{\prime \prime}+y^{\prime}-6 y=0$.
(3) $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$.
(2) $3 y^{\prime \prime}+y^{\prime}-y=0$.
(4) $y^{\prime \prime}-6 y^{\prime}+13 y=0$.

An initial-value problem for the second-order differential equation $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=$ $G(x), x \in I$, consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1} \quad \text { for some } x_{0} \in I,
$$

where y_{0} and y_{1} are given constants. If P, Q, R and G are continuous on I and $P(x) \neq 0$ for $x \in I$, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initial-value problem.
Example Solve the initial-value problem

$$
y^{\prime \prime}+y^{\prime}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

A boundary-value problem for the second-order differential equation $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+$ $R(x) y=G(x), x \in I$, consists of finding a solution y of the differential equation that also satisfies boundary conditions of the form

$$
y\left(x_{0}\right)=y_{0}, \quad y\left(x_{1}\right)=y_{1} \quad \text { where } x_{0}, x_{1} \text { are boundary points (or end points) of } I .
$$

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.
Example Solve the boundary-value problem $y^{\prime \prime}+2 y^{\prime}+y=e^{-x}, y(0)=1, y(1)=3$.
Solution : Since the characteristic equation $0=r^{2}+2 r+1=(r+1)^{2}$ has a double root $r=-1$, $y_{1}(x)=e^{-x}$ and $y_{2}(x)=x e^{-x}$ are linearly independent homogeneous solutions of $y^{\prime \prime}+2 y^{\prime}+y=0$. To find a particular solution y_{p} of $y^{\prime \prime}+2 y^{\prime}+y=e^{-x}$, we set $y_{p}(x)=A x^{2} e^{-x}$ and use the method of undetermined coefficients to get $A=\frac{1}{2}$ and the general solution $y(x)=\frac{1}{2} x^{2} e^{-x}+C_{1} e^{-x}+C_{2} x e^{-x}$, where C_{1}, C_{2} are arbitrary constants. Using the boundary conditions $y(0)=1$ and $y(1)=3$, we get $C_{1}=1, C_{2}=3 e-\frac{3}{2}$, and $y(x)=\frac{1}{2} x^{2} e^{-x}+e^{-x}+\left(3 e-\frac{3}{2}\right) x e^{-x}$.

Theorem Consider the second-order nonhomogeneous linear differential equations with constant coefficients

$$
(*) \quad a y^{\prime \prime}+b y^{\prime}+c y=G(x), \quad x \in I
$$

where a, b and c are constants and $G(x)$ is continuous for $x \in I$.

1. If $y_{p_{1}}(x)$ and $y_{p_{2}}(x)$ are two (particular) solutions of $(*)$, then $y_{p_{1}}(x)-y_{p_{2}}(x)$ is a (homogeneous) solution of the (homogeneous) equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad x \in I .
$$

2. The general solution of $(*)$ can be written as

$$
y(x)=y_{p}(x)+y_{h}(x),
$$

where $y_{p}(x)$ is a particular solution of $(*)$ and $y_{h}(x)$ is the general (homogeneous) solution of the homogeneous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad x \in I
$$

The Method of Undetermined Coefficients is used to find a particular solution of the second-order nonhomogeneous linear differential equations with constant coefficients

$$
(*) \quad a y^{\prime \prime}+b y^{\prime}+c y=G(x), \quad x \in I .
$$

1. If $G(x)=e^{k x} P(x)$, where $P(x)$ is a polynomial of degree n, then try

$$
y_{p}(x)=e^{k x} Q(x),
$$

where $Q(x)$ is an $n^{\text {th }}$-degree polynomial (whose coefficients are determined by substituting in the differential equation).
2. If $G(x)=e^{k x} P(x) \cos m x$ or $G(x)=e^{k x} P(x) \sin m x$, where $P(x)$ is an $n^{\text {th }}$-degree polynomial, then try

$$
y_{p}(x)=e^{k x} Q(x) \cos m x+e^{k x} R(x) \sin m x,
$$

where $Q(x), R(x)$ are $n^{\text {th }}$-degree polynomials.
Modification: If any term of y_{p} is a solution of the homogeneous differential equation, multiply y_{p} by x (or by x^{2} if necessary).
Example Solve the initial-value problem $y^{\prime \prime}+y^{\prime}-2 y=x^{2}+\sin x+e^{x}, y(0)=1, y^{\prime}(0)=2$.
Solution : Since the characteristic equation

$$
0=r^{2}+r-2=(r+2)(r-1)
$$

has roots $r=-2$ or $1, y_{1}(x)=e^{-2 x}$ and $y_{2}(x)=e^{x}$ are linearly independent homogeneous solutions of

$$
y^{\prime \prime}+y^{\prime}-2 y=0 .
$$

To find a particular solution y_{p} of $y^{\prime \prime}+y^{\prime}-2 y=x^{2}+\sin x+e^{x}$, we set

$$
y_{p}(x)=A_{2} x^{2}+A_{1} x+A_{0}+B \cos x+C \sin x+D x e^{x}
$$

and use the method of undetermined coefficients to get $A_{2}=A_{1}=-\frac{1}{2}, A_{0}=-\frac{3}{4}, B=$ $-\frac{1}{10}, C=-\frac{3}{10}, D=\frac{1}{3}$, and the general solution

$$
y(x)=-\frac{x^{2}}{2}-\frac{x}{2}-\frac{3}{4}-\frac{1}{10} \cos x-\frac{3}{10} \sin x+\frac{1}{3} x e^{x}+C_{1} e^{-2 x}+C_{2} e^{x}
$$

where C_{1}, C_{2} are arbitrary constants. Using the initial conditions $y(0)=1$ and $y^{\prime}(0)=2$, we obtain $C_{1}=-\frac{37}{180}, C_{2}=\frac{37}{18}$, and the solution $y(x)=y_{p}(x)-\frac{37}{180} e^{-2 x}+\frac{37}{18} e^{x}$.
The Method of Variation of Parameters is used to find a particular solution of the nonhomogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=G(x), x \in I$, of the form

$$
(\dagger) \quad y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \quad x \in I,
$$

where y_{1} and y_{2} are linearly independent (homogeneous) solutions of the (homogeneous) equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

This method is called variation of parameters because we have varied the parameters c_{1} and c_{2} to make them functions.
Differentiating Equation (\dagger), we get

$$
\left(\dagger^{\prime}\right) \quad y_{p}^{\prime}=\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)+\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right), \quad x \in I .
$$

Since u_{1} and u_{2} are arbitrary functions, we can impose two conditions on them.
One condition is that y_{p} is a solution of the differential equation; we can choose the other condition so as to simplify our calculations. In view of the expression in Equation (\dagger^{\prime}), let's impose the condition that

$$
(\dagger \dagger) \quad u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \quad x \in I .
$$

Substituting ($\dagger \dagger$) into $\left(\dagger^{\prime}\right)$, we get $y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}$ for $x \in I$ and that

$$
\left(\dagger^{\prime \prime}\right) \quad y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}, \quad x \in I .
$$

Substituting $(\dagger),\left(\dagger^{\prime}\right)$ and $\left(\dagger^{\prime \prime}\right)$ in the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=G(x), x \in I$, we get

$$
\begin{aligned}
& a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right)+b\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+c\left(u_{1} y_{1}+u_{2} y_{2}\right)=G \\
\Longrightarrow \quad & u_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+u_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right)+a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=G \\
\Longrightarrow & \left(\dagger \dagger^{\prime}\right) \quad a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=G \quad \text { since } y_{1}, y_{2} \text { are homogeneous solutions. }
\end{aligned}
$$

Thus $u_{1}^{\prime}, u_{2}^{\prime}$ are solutions of the system ($\left.\dagger \dagger\right),\left(\dagger^{\prime}\right)$

$$
\left\{\begin{array}{c}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=\frac{G}{a}
\end{array} \Longrightarrow\left(\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{\frac{G}{a}} \Longrightarrow\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\frac{1}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}\left(\begin{array}{cc}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right)\binom{0}{\frac{G}{a}}\right.
$$

Example Solve the differential equation $y^{\prime \prime}+y=\tan x, 0<x<\frac{\pi}{2}$.

Solution: Since the characteristic equation $r^{2}+1=0$ has roots $r= \pm i, y_{1}(x)=\cos x$ and $y_{2}(x)=\sin x$ are linearly independent homogeneous solutions.
Let $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ be a particular solution with $u_{1}^{\prime}, u_{2}^{\prime}$ satisfying

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{\frac{\sin x}{\cos x}} \\
\Longrightarrow & \binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\left(\begin{array}{c}
-\sin ^{2} x \\
\cos x \\
\sin x
\end{array}\right)=\binom{-\sec x+\cos x}{\sin x} \\
\Longrightarrow & \binom{u_{1}}{u_{2}}=\binom{-\ln |\sec x+\tan x|+\sin x}{-\cos x}
\end{aligned}
$$

Then the general solution is

$$
\begin{aligned}
y & =(-\ln |\sec x+\tan x|+\sin x) \cos x-\cos x \sin x+C_{1} \cos x+C_{2} \sin x \\
& =-\cos x \ln |\sec x+\tan x|+C_{1} \cos x+C_{2} \sin x
\end{aligned}
$$

where C_{1}, C_{2} are arbitrary constants.

